DEPARTMENT OF MATHEMATICS

CR/34334

UNIVERSITY OF HOUSTON

HOUSTON, TEXAS

(NASA-CR-134334) RESULTS ON THE TWO N74-28.53 POPULATION FEATURE SELECTION PROBLEM USING PROBABILITY OF CORRECT CLASSIFICATION AS A CRITERION (Houston Univ.) 14 p HC Unclas \$4.00 CSCL 12A G3/19 43117

RESULTS ON THE TWO POPULATION FEATURE SELECTION PROBLEM USING PROBABILITY OF CORRECT CLASSIFICATION AS A CRITERION

BY B.CHARLES PETERS MAY 1974 REPORT #32

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC
UNDEP
CONTRACT NAS-9-12777

3801 CULLEN BLVD. HOUSTON, TEXAS 77004

Report # 32

Results on the Two Population Feature Selection Problem Using Probability of Correct Classification as a Criterion

bу

B.C. Peters, Jr.

Mathematics Department

University of Houston

May, 1974

NAS-9-12777 MOD 1S

ABSTRACT

We present the variational equations for maximizing the probability of correct classification as a function of a 1×n feature selection matrix B for the two population problem. For the special case of equal covariance matrices the optimal B is unique up to scalar multiples and rank one sufficient. For equal population means, the best 1×n B is an eigenvector corresponding either to the largest or smallest eigenvalue of $\Sigma_2^{-1}\Sigma_1$, where Σ_1 and Σ_2 are the n×n covariance matrices of the two populations. The transformed probability of correct classification depends only on the eigenvalue. Finally, a procedure is proposed for constructing an optimal or nearly optimal k×n matrix of rank k without solving the k-dimensional variational equation.

Results on the Two Population Feature
Selection Problem Using Probability of
Correct Classification as a Criterion

bу

B.C. Peters, Jr.

1. Introduction

Let π_1 and π_2 be n-variate normally distributed populations with conditional densities $P_1(x) \sim N(\mu_1, \Sigma_1)$ and $P_2(x) \sim N(\mu_2, \Sigma_2)$ and a priori probabilities α_1 and α_2 respectively. In this note we consider some special cases of the problem of selecting a 1×n nonzero vector B which maximizes the transformed probability of correct classification

$$h(B) = \int_{R} max[\alpha_1P_1(y,B), \alpha_2P_2(y,B)]dy,$$

where $P_i(y,B) \sim N(B\mu_i, B\Sigma_i B^T)$ are the conditional densities of the variable y = Bx, i = 1,2. We assume the maximum likelihood classifier: assign x to π_1 if $\alpha_1 P_1(Bx,B) \geq \alpha_2 P_2(Bx,B)$; otherwise, assign x to Π_2 .

It is shown in [2] that for the B which maximizes h(B), the Gateaux differential $\delta h(B;C) = \lim_{s \to 0} \frac{h(B+sC) - h(B)}{s}$ exist for all 1×n vectors C and

(1)
$$\delta h(B;C) = \alpha_1 \int_{R_1(B)} \delta P_1(y,B;C) dy + \alpha_2 \int_{R_2(B)} \delta P_2(y,B;C) dy \text{ where the}$$

 $R_{_{\rm f}}(B)$ are the Bayes regions

$$R_1(B) = \{ y \in R \mid \alpha_1 P_1(y,B) > \alpha_2 P_2(y,B) \}$$

 $R_2(B) = \{ y \in R \mid \alpha_1 P_1(y,B) < \alpha_2 P_2(y,B) \}$

Moreover, [1],

(2)
$$\delta P_{i}(y,B;C) = P_{i}(y,B) \left\{ \frac{C \Sigma_{i} B^{T}}{(B \Sigma_{i} B^{T})^{2}} (y - B \mu_{i})^{2} \right\}$$

$$+ \frac{C\mu_{\mathbf{i}}}{B\Sigma_{\mathbf{i}}B^{\mathrm{T}}} \left(y - B\mu_{\mathbf{i}} \right) - \frac{C\Sigma_{\mathbf{i}}B^{\mathrm{T}}}{B\Sigma_{\mathbf{i}}B^{\mathrm{T}}}$$

Substituting (2) into (1) and integrating by parts gives

(3)
$$\delta h(B;C) = -\alpha_{1}P_{1}(y,B) \frac{c\Sigma_{1}B^{T}}{B\Sigma_{1}B^{T}}(y - B\mu_{1}) + C\mu_{1}$$

$$-\alpha_{2}P_{2}(y,B) \frac{c\Sigma_{2}B^{T}}{B\Sigma_{2}B^{T}}(y - B\mu_{2}) + C\mu_{2}$$

$$R_{2}(B)$$

In order to determine $R_1(B)$ and $R_2(B)$ it is necessary to solve the

equation $\alpha_1^P P_1(y,B) = \alpha_2^P P_2(y,B)$ whose roots are those of the discriminant function

$$H(y,B) = \alpha(B)y^2 + 2\beta(B)y + \gamma(B),$$

where

$$\alpha(B) = B(\Sigma_{1} - \Sigma_{2})B^{T}$$

$$\beta(B) = (B\Sigma_{2}B^{T})B\mu_{1} - (B\Sigma_{1}B^{T})B\mu_{2}$$

$$\gamma(B) = (B\Sigma_{1}B^{T})(B\mu_{2})^{2} - (B\Sigma_{2}B^{T})(B\mu_{1})^{2}$$

$$+ (B\Sigma_{1}B^{T})(B\Sigma_{2}B^{T})[\ln \frac{B\Sigma_{2}B^{T}}{B\Sigma_{1}B^{T}} + \ln \frac{\alpha_{1}}{\alpha_{2}}^{2}].$$

We are not interested in the case where H(y,B)=0 has no real roots or holds identically, since in this case we always have $h(B)=\max\{\alpha_1,\alpha_2\}$, which is the minimum value that h(B) can attain.

2. The Equal Covariance Case

If
$$\Sigma_1 = \Sigma_2 = \Sigma$$
, then $\alpha(B) = 0$ and $H(y,B) = 0$ has the single root
$$a = \frac{B(\mu_1 + \mu_2)}{2} - \frac{B\Sigma B^T 1 n}{2B(\mu_1 - \mu_2)}^2$$

For either $R_1(B) = (-\infty, a)$ or $R_2(B) = (-\infty, a)$ substitution into equation (3) yields

$$\delta h(B;C) = C(\mu_1 - \mu_2) - \frac{C\Sigma B^T}{B\Sigma B^T} B(\mu_1 - \mu_2).$$

Thus, for the optimal B,

$$\mu_1 - \mu_2 = \frac{\Sigma B^T}{B \Sigma B^T} B(\mu_1 - \mu_2).$$

which may be rewritten as

$$\mathbf{B}^{\mathbf{T}} = \frac{\mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{\mathbf{T}}}{\mathbf{B} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}).$$

It is readily verified that

$$B_0 = (\mu_1 - \mu_2)^T \Sigma^{-1}$$

satisfies this equation and that any other solution must be a scalar multiple of B_0 . Since $h(\lambda B_0) = h(B_0)$ for $\lambda \neq 0$, B_0 maximizes h(B). The corresponding probability of correct classification is

$$h(B_0) = erf(\frac{1}{2} \vec{V}(\mu_1 - \mu_2)^T \Sigma^{-1}(\mu_1 - \mu_2)).$$

A nonzero $l \times n$ vector B is called <u>sufficient</u> if h(B) = PCC, where PCC is the untransformed probability of correct classification

PCC =
$$\max[\alpha_1^P_1(x), \alpha_2^P_2(x)]dx$$

$$R^n$$

$$= \alpha_{1}^{P}_{1}(x)dx + \alpha_{2}^{P}_{2}(x)dx$$

$$R_{1}$$

$$R_{2}$$

 R_1 and R_2 are the Bayes regions in R^n :

$$\begin{aligned} & \mathbf{R}_{1} = \{\mathbf{x} \in \mathbf{R}^{n} \mid \alpha_{1} \mathbf{P}_{1}(\mathbf{x}) > \alpha_{2} \mathbf{P}_{2}(\mathbf{x})\} \\ & \mathbf{R}_{2} = \{\mathbf{x} \in \mathbf{R}^{n} \mid \alpha_{1} \mathbf{P}_{1}(\mathbf{x}) < \alpha_{2} \mathbf{P}_{2}(\mathbf{x})\}. \end{aligned}$$

It is shown in [3], that B is sufficient if and only if $B^{-1}(R_1(B)) = R_1$ and $B^{-1}(R_2(B)) = R_2$ up to sets of measure zero. By a straightforward calculation it follows that for $B_0 = (\mu_1 - \mu_2)^T \Sigma^{-1}$,

$$B_0^{-1}(R_1(B_0)) = R_1$$

and

$$B_0^{-1}(R_2(B_0)) = R_2$$

Thus B_{Ω} is sufficient and

PCC = erf(
$$\frac{1}{2} \sqrt{(\mu_1 - \mu_2)}^T \Sigma^{-1} (\mu_1 - \mu_2)$$
).

3. The Equal Mean Case

If $\mu_1 = \mu_2 = 0$, the equation H(y,B) = 0 reduces to

$$0 = B(\Sigma_{1} - \Sigma_{2})B^{T}y^{2} + (B\Sigma_{1}B^{T})(B\Sigma_{2}B^{T})[1n\frac{B\Sigma_{2}B^{T}}{B\Sigma_{1}B^{T}} + 1n\frac{\alpha_{1}}{\alpha_{2}}^{2}].$$

In order to avoid complications we will assume throughout this section that $\alpha_1 = \alpha_2 = \frac{1}{2}$, although the results also hold for unequal apriori probabilities. Thus,

$$0 = B(\Sigma_1 - \Sigma_2)B^T y^2 + (B\Sigma_1 B^T)(B\Sigma_2 B^T) \ln \frac{B\Sigma_2 B^T}{B\Sigma_1 B^T}.$$

The roots of this equation are -a and a, where

$$\mathbf{a} = \frac{(\mathbf{B}\boldsymbol{\Sigma}_{1}\mathbf{B}^{T})(\mathbf{B}\boldsymbol{\Sigma}_{2}\mathbf{B}^{T})}{\mathbf{B}\boldsymbol{\Sigma}_{1}\mathbf{B}^{T} - \mathbf{B}\boldsymbol{\Sigma}_{2}\mathbf{B}^{T}} \ln \frac{\mathbf{B}\boldsymbol{\Sigma}_{1}\mathbf{B}^{T}}{\mathbf{B}\boldsymbol{\Sigma}_{2}\mathbf{B}^{T}}$$

For either $R_1(B) = (-a,a)$ or $R_2(B) = (-a,a)$, substitution into equation (3) gives

$$\delta h(B;C) = \frac{C\Sigma_1 B^T}{B\Sigma_1 B^T} - \frac{C\Sigma_2 B^T}{B\Sigma_2 B^T}.$$

Thus if B maximizes h(B), then

$$\Sigma_{1}B^{T} = \frac{B\Sigma_{1}B^{T}}{B\Sigma_{2}B^{T}} \Sigma_{2}B^{T}$$

which is satisfied if and only if B^T is an eigenvector of $\Sigma_2^{-1}\Sigma_1$. The corresponding eigenvalue is $\lambda = \frac{B\Sigma_1B^T}{B\Sigma_2B^T}$. Note that $R_1(B) = (-a,a)$ if $\lambda < 1$ and $R_2(B) = (-a,a)$ if $\lambda > 1$. Assuming $R_1(B) = (-a,a)$, the transformed probability of correct classification is

$$h(B) = \frac{1}{2} \int_{-\infty}^{-a} P_{2}(y,B) dy + \frac{1}{2} \int_{-a}^{a} P_{1}(y,B) dy$$

$$+ \frac{1}{2} \int_{a}^{\infty} P_{2}(y,B) dy$$

$$= \frac{1}{2} + \operatorname{erf}(\frac{a}{(B\Sigma_{1}B^{T})^{1/2}}) - \operatorname{erf}(\frac{a}{B\Sigma_{2}B^{T})^{1/2}})$$

$$= \frac{1}{2} + \operatorname{erf}(\sqrt{\frac{1}{\lambda-1}} \ln \lambda) - \operatorname{erf}(\sqrt{\frac{\lambda}{\lambda-1}} \ln \lambda)$$

$$= f(\lambda),$$

while if $R_2(B) = (-a,a)$, then

$$h(B) = f(\frac{1}{\lambda}) = 1 - f(\lambda).$$

It is easy to show that $f'(\lambda) < 0$ for $\lambda \in (0,1)$. Hence h(B) is maximized when $\min\{\lambda,\frac{1}{\lambda}\}$ is as small as possible. The result may be stated as follows. Theorem: Let π_1 and π_2 be normally distributed populations in R^n with equal means and covariance matrices Σ_1 and Σ_2 respectively. Let λ_{\min} and λ_{\max} be respectively the smallest and largest eigenvalues of $\Sigma_2^{-1}\Sigma_1$. If $\lambda_{\min} < \frac{1}{\lambda_{\max}}$, then h(B) is maximized for B^T any eigenvector of $\Sigma_2^{-1}\Sigma_1$ corresponding to λ_{\min} . Otherwise h(B) is maximized for B^T any eigenvector corresponding to λ_{\max} .

4. Feature Reduction to k > 1 Dimensions.

If B is a rank k k×n matrix, it is possible to derive an expression for $\delta h(B;C)$, where C is a k×n matrix. Unfortunately, the resulting variational equation involves integrals over the k-dimensional regions $R_1(B)$ and $R_2(B)$ which are difficult to evaluate. Thus, it would be desireable to have a procedure for constructing a k×n matrix one row at a time which maximizes or nearly maximizes h(B). If Q is a nonsingular k×k matrix, then h(Q|B) = h(B). Thus, it can be assumed that the rows of B are orthogonal, or in the two population case, that $B\Sigma_1B^T$ and $B\Sigma_2B^T$ are both diagonal matrices. The following procedures are immediately suggested. Choose a l×n nonzero vector B_1 to maximize h(B). Having constructed B_1, \dots, B_k (k < n) choose a nonzero l×n vector B_{k+1} which maximizes h(B) subject to the constraints

$$B_{\ell+1}B_{i}^{T} = 0 i = 1,...,\ell$$

or to $B_{\ell+1}^{\Sigma} \Sigma_1 B_i^T = B_{\ell+1}^{\Sigma} \Sigma_2 B_i^T = 0$ i = 1,..., ℓ .

Let $B_k = \begin{pmatrix} B_1 \\ B_k \end{pmatrix}$ be the feature selection matrix for reduction to k dimension. Clearly $h(B_1) \le h(B_2) \le \dots \le h(B_n) = PCC$, since $B_k = (I_e \mid Z)B_{k+1}$,

where I_e is the $\ell \times \ell$ identity matrix and Z is an $\ell \times \ell$ zero vector. In order to justify the use of either of these procedures it would be desireable to have a nonzero lower bound on $h(B_{\ell+1}) - h(B_{\ell})$ when B_{ℓ} is not sufficient. The orthogonality constraint is computationally more attractive since it is easy to compute the projection onto the constraint space at each step and incorporate it into a steepest descent procedure. However, the other constraint leads to nice theoretical results when applied to the two population problem with equal population means.

Suppose $\mu_1 = \mu_2 = 0$ and B_1 is chosen according to the theorem in the last section. If B_2 maximizes h(B) subject to the constraints $B_2\Sigma_1B_1^T = B_2\Sigma_2B_1^T = 0$, and h is differentiable at B_2 , then there are scalars λ_1 and λ_2 such that

$$\frac{\Sigma_{1}B_{2}^{T}}{B_{2}\Sigma_{1}B_{2}^{T}} - \frac{\Sigma_{2}B_{2}^{T}}{B_{2}\Sigma_{2}B_{2}^{T}} = \lambda_{1}\Sigma_{1}B_{1}^{T} + \lambda_{2}\Sigma_{2}B_{2}^{T}.$$

Since B_1^T is an eigenvector of $\Sigma_2^{-1}\Sigma_1$ corresponding to an eigenvalue β ,

$$\frac{\Sigma_1 B_2^T}{B_2 \Sigma_1 B_2^T} - \frac{\Sigma_2 B_2^T}{B_2 \Sigma_2 B_2^T} = (\lambda_1 \beta + \lambda_2) \Sigma_2 B_1^T.$$

$$= \beta' \Sigma_2 B_1^T.$$

The conditions $B_1 \Sigma_1 B_2^T = B_1 \Sigma_2 B_2^T = 0$ lead to

$$0 = \beta^{\dagger} B_1^{\Sigma} \Sigma_2^{\Xi} B_1^{T}$$

and $\beta'=0$. But then B_2^T is also an eigenvector of $\Sigma_2^{-1}\Sigma_1$. It can easily be shown that at the $(\ell+1)\underline{st}$ step , the $1\times n$ vector $B_{\ell+1}$ maximizing h(B) subject to the constraints $B_{\ell+1}\Sigma_1B_1^T=B_{\ell+1}\Sigma_2B_1^T$, $i=1,\ldots,\ell$ is an eigenvector of $\Sigma_2^{-1}\Sigma_1$. Thus the rows of B_k are the k eigenvectors corresponding to the largest or smallest eigenvalues of $\Sigma_2^{-1}\Sigma_1$.

REFERENCES

- Darcy, Louise Wilson, Linear feature selection and the probability of misclassification, Masters Thesis, Texas A&M University. May, 1974.
- Peters, B.C., Jr., On differentiating the probability of error in the multipopulation feature selection problem, II, Report #31, NAS-9-12777, University of Houston, Department of Mathematics, March, 1974.
- Quirein, J.A., Sufficient statistics for divergence and probability of misclassification, Report #14, NAS-9-12777, University of Houston, Department of Mathematics, November, 1972